诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
育国之栋梁 造国之重器——同济大学深入学习贯彻党的二十大精神******
【奋进新征程 建功新时代·深入学习贯彻党的二十大精神·同济大学】
光明日报记者 颜维琦 光明日报通讯员 黄艾娇
“争做新征程上的追梦奋斗者,勇于把个人奋斗融入中华民族伟大复兴的壮阔征程中;争做新征程上的实干担当者,努力成为以中国式现代化全面推进中华民族伟大复兴的先锋力量。”前不久,同济大学党委书记方守恩以“踔厉奋发新征程 勇毅前行向未来”为主题,为青年学子宣讲党的二十大精神。这既是一堂大思政课,也是一堂面向全体学生党员和入党积极分子的党课。
连日来,同济大学迅速兴起学习宣传贯彻党的二十大精神热潮,师生纷纷行动,反复研读党的二十大报告、成立师生宣讲团、推进二十大精神“三进”,在学深、悟透、做实上下功夫。师生们表示,将以更加昂扬的姿态奋楫扬帆再出发,在中国特色世界一流大学建设新征程中展现更大作为,为全面建设社会主义现代化国家、全面推进中华民族伟大复兴贡献更多智慧和力量。
同济大学海洋与地球科学学院教授翦知湣(右)带领团队成员进行科研攻关。资料图片
推动党的二十大精神入脑入心
10月25日,同济大学召开党委理论学习中心组(扩大)学习会,传达学习党的二十大精神。同济大学党委书记方守恩领学党的二十大报告。党的二十大代表、同济大学校长、中国工程院院士陈杰传达党的二十大精神。与会人员表示,党的二十大报告首次以专章对教育、科技、人才进行一体部署,要不负使命、不负期待,把党的二十大精神贯彻落实到各项工作中,奋力推进中国特色世界一流大学建设,为加快建设教育强国、科技强国、人才强国作出新的更大贡献。11月1日,同济大学召开全校大会,对深入学习宣传贯彻党的二十大精神作出全面动员部署。
11月18日,学习贯彻党的二十大精神中央宣讲团报告会在同济大学举行,中央宣讲团成员,中国工程院党组书记、院长李晓红作宣讲报告。来自全国各地的80余名中国工程院院士、中国工程院机关干部,以及同济大学党委理论学习中心组成员、部分职能部处负责人和教师代表等参加了报告会。
“要增强全民的安全忧患意识,坚定不移贯彻总体国家安全观,统筹发展和安全,建设更高水平的平安中国,以新安全格局保障新发展格局。”11月25日,学习贯彻党的二十大精神暨“国家安全现代化与全面建设社会主义现代化国家”学术研讨会在同济大学举行,这为深入学习贯彻党的二十大精神提供了学术新视角新思路。同济大学学习贯彻党的二十大精神宣讲团成立以来,校领导、各职能部门和学院负责同志及专家纷纷行动,面向全体师生,有针对性地开展宣讲。
“巍巍宝塔山,滚滚延河水。1935年至1948年,延安这片红色热土见证着一段峥嵘岁月。”11月10日晚,同济大学两名大一新生担任主播,带领观众“云上”观看在学校展出的“延安精神永放光芒”主题展。用青春声音传播时代强音。同济大学时代声音传播社联合“理论+”宣讲团等开展学习宣传贯彻党的二十大精神的系列宣讲会,推出“1+10”系列课程,以“数说二十大报告”作为总述,还包括“全面从严治党永远在路上”“历史主动精神涵养新时代青年担当”等10个专题课程。
如何推动党的创新理论最新成果进教材、进课堂、进头脑?学校马克思主义学院集体备课,共同研讨推动党的二十大精神“三进”的策略和方法。12月3日,学习贯彻党的二十大精神暨“新时代课程思政教学设计与创新”学术研讨会在同济大学举行,这为推动党的二十大精神和习近平新时代中国特色社会主义思想“三进”、推进新时代课程思政高质量发展开拓了新思路。
“备受鼓舞,也深感使命在肩。我将把青春奉献给乡村振兴与文化遗产保护事业,做乡土中国的守护者、传承者、弘扬者,让中华文脉永续传承。”同济大学建筑与城市规划学院2019级博士研究生崔家滢说。
同济大学上海自主智能无人系统科学中心。资料图片
以更强使命担当培育国之栋梁
强化基础学科专业建设,推动学科专业交叉融合,推进本研贯通式人才培养……近日,在全校广泛开展教育思想大讨论的基础上,同济大学发布《关于全面提升人才培养质量的若干意见》,贯穿“招生—培养—深造—就业—校友”人才成长全链条。
2022年秋季学期,同济大学新成立的国豪书院迎来首批345名学子,开启培养拔尖创新人才新模式。一批心怀使命、志趣高远、潜力突出的学生,分别进入工科试验班(国豪精英班)、医学试验班(国豪精英班)和“强基计划”。书院着力培养具有深厚科学素养、前瞻性科学判断力、突破性学术创新能力、大团队组织领导能力的未来科学家。
“党的二十大报告为我国教育和科技发展指明了前进方向。我们要始终牢记为党育人、为国育才光荣使命,加强基础学科建设,持续增强卓越拔尖人才培养能力,努力做学生为学、为事、为人的大先生。”同济大学先进技术研究院院长、物理科学与工程学院教授王占山说。
依托同济大学今年成立的我国首个中德博士生院、首个中德合作学科交叉的国际科研合作平台——中德联合研究中心(同济大学),中德携手推进科教融合的高层次人才培养。11月29日,由教育部主办、同济大学承办的2022国际产学研用合作会议,也是同济大学中德博士生院的一次选题对接会。中德合作导师围绕细化博士生联合培养的选题和方案进行对接交流,联手培养两国发展需要、引领未来的拔尖创新人才和专业精英。
为实现高水平科技自立自强贡献力量
“党的二十大报告首次专辟一章对‘实施科教兴国战略,强化现代化建设人才支撑’进行阐述,深刻体现了习近平总书记对教育的关心重视一以贯之。”陈杰说,我们要发挥高水平研究型高校的整体优势,主动面向国家战略需求,勇于站在国际科学前沿,实现重大原始创新突破;推进学科交叉融合,实施重大科技协同攻关;进一步加强有组织科研,加快关键核心技术突破;构建学科链对接产业链的产教融合新机制,支持和引领产业发展。
国家所需,科研所向。近年来,同济大学交出一张张亮眼的科研成绩单,在港珠澳大桥、北京大兴国际机场及雄安新区建设中,在脱贫攻坚、乡村振兴、海洋强国和交通强国建设等主战场,“同济元素”分外耀眼。
今年以来,同济大学一批来自不同学科领域的高水平科研创新成果接连发表于国际顶级学术期刊。生命科学与技术学院高绍荣/高亚威教授团队与美国科学家合作研究成果发表于《科学》,该研究为进一步解析生命过程的分子调控机制提供了新的学术视角。医学院、附属东方医院章小清教授课题组和美国科学家合作研究成果发表于《自然》,研究团队发现关联学习记忆的关键神经元。海洋与地球科学学院翦知湣教授团队研究成果发表于《自然》,首次从能量学角度阐释了气候演变的低纬驱动。
“我们要坚决把学习贯彻党的二十大精神转化为推动新时代科技创新、攻克干细胞领域关键技术的实际行动,加强基础原创性、引领性科技攻关,奋勇攀登世界科技巅峰,为国家高水平科技自立自强贡献力量。”高绍荣说。
不久前,由同济大学牵头建设的无人系统多体协同重大科技基础设施一期建设项目启动。这一人工智能领域重大科技基础设施建成后,将成为人工智能原创理论突破和关键技术验证的重要实验装置,支撑无人系统核心共性技术突破。
“学习贯彻党的二十大精神,让我们深切感受到肩负的历史责任。”中国科学院院士、同济大学土木工程学院教授李杰表示,我们要强化“四个面向”的意识,大力弘扬科学精神,加强原始创新,努力实现更多“从0到1”的突破。
《光明日报》( 2022年12月22日 05版)
(文图:赵筱尘 巫邓炎)