着力提升产业链供应链韧性和安全水平******
作者:闫坤、刘诚(中国社会科学院习近平新时代中国特色社会主义思想研究中心研究员)
党的二十大报告提出“要坚持以推动高质量发展为主题,把实施扩大内需战略同深化供给侧结构性改革有机结合起来,增强国内大循环内生动力和可靠性,提升国际循环质量和水平”,并对“着力提升产业链供应链韧性和安全水平”提出了要求。推动产业链供应链优化升级是稳固国内大循环主体地位、提升国际循环质量和水平的迫切需要,必须把增强产业链韧性和竞争力放在更加重要的位置,着力构建自主可控、安全高效的产业链供应链。
产业链供应链发展总体向好
产业链、供应链在关键时刻不能掉链子,这是大国经济必须具备的重要特征。近年来,我国产业链、供应链发展总体向好,完备的产业体系、强大的动员组织和产业转换能力为疫情防控和经济社会发展诸多方面提供了重要物质保障。
一方面,我国产业体系完备的特征不断强化。近年来,我国不断巩固产业体系较为完备的优势。目前我国拥有41个工业大类、207个工业中类、666个工业小类,是全世界唯一拥有联合国产业分类中全部工业门类的国家。在500种主要工业产品中,我国有四成以上产品的产量位居世界第一。特别是高铁、5G技术和设备、新能源汽车等先后成长为领先世界的关键产业链。
另一方面,统筹国内循环和国际循环,不断提升产业链供应链韧性。我们把扩大内需作为保持经济平稳较快发展的基本立足点,推动经济发展向内需主导转变,国内循环在我国经济中的作用显著上升。在此基础上,发挥超大规模市场优势,建设高效规范、公平竞争、充分开放的全国统一大市场,促进商品要素资源在更大范围内畅通流动,增强国内大循环内生动力和可靠性,极大提升了我国产业链供应链的韧性。同时,我们强调更大力度吸引和利用外资,提升贸易投资合作质量和水平,提升国际循环质量和水平。一些领域已经呈现出外商投资主动与我国发展战略相契合的趋势,为我国的产业链供应链安全稳定提供助力。
但还需要看到,确保产业链供应链安全可靠尚需解决一些痛点难点问题。
一是中小企业较为脆弱,这加大了产业链供应链断裂风险。产业链供应链的发展重在“链”,即产业生态系统。提升产业链供应链安全水平,需要大中小企业协力整合产业链上下游资源要素,实现融通发展、内外联动。虽然中小企业数量众多且单个企业对产业链供应链影响较小,但其对经济环境较敏感、抗风险能力较低,是存在产业链供应链断裂风险的主要“节点”。
二是建设全国统一大市场仍面临挑战。构建新发展格局,迫切需要加快建设全国统一大市场,建立全国统一的市场制度规则。这就要求进一步破除地方保护和市场分割,从制度建设着眼,着力解决突出矛盾和问题,加快清理废除妨碍统一市场和公平竞争的各种规定和做法,破除各种封闭小市场、自我小循环,不断提高政策的统一性、规则的一致性、执行的协同性。
三是关键技术、设备和物资仍存在“卡脖子”风险。当前,我国产业链供应链尚存在部分领域核心基础零部件、关键技术和设备、关键基础材料过度依赖进口,以及质量技术基础不完善、共性技术创新体系缺失等问题,使我国对产业链供应链部分关键环节的掌控力较弱,局部受阻或断裂的风险较大。
推动产业链供应链优化升级
当前,我国经济韧性强、潜力大、活力足,各项政策效果正持续显现。我们需乘势而上,持续巩固经济恢复的基础,积极应对需求收缩、供给冲击、预期转弱三重压力。特别是要在构建自主可控、安全高效的产业链供应链上切实发力,推动产业链供应链优化升级。
第一,打好关键核心技术攻坚战,加快补齐产业链供应链短板。针对产业链供应链关键环节存在的“卡脖子”问题,需对重点行业产业链供应链进行系统梳理,摸清薄弱环节、找准风险点,分行业做好战略设计和精准施策,助力地方和企业自主创新能力提升,推动对项目、平台、人才、资金的一体化配置运用,着力实施产业基础再造工程和重大技术装备攻关工程。要从保障我国产业安全和国家安全的角度出发,着力打造自主可控、安全可靠的产业链、供应链,力争重要产品和供应渠道都至少有一个替代来源,形成必要的产业备份系统。
第二,保持制造业比重基本稳定,持续巩固制造业优势。制造业是立国之本、强国之基,是实体经济中最重要和最基础的部分。我国制造业规模已连续多年保持世界第一,在驱动经济发展、参与国际竞争中发挥着重要作用。保持制造业比重基本稳定,促进制造业提质增效,能有力增强我国产业链供应链相对完备的重要优势。需采取有力措施提高企业根植性,促进产业在国内有序转移,当向外转移时要尽量把产业链关键环节留在国内。
第三,以企业为主体,促进“点”“链”协同。支持龙头企业做大做强,中小企业做专做精,充分发挥国有企业带动作用,使其重点掌控产业链供应链中战略意义强、技术含量高的关键环节,引导产业链供应链重点企业制定供应链风险预警和应对方案,提升其节点支撑能力。
第四,推动产业链跨区域合作,加快建设全国统一大市场。立足国内大循环,将产业链优势和大市场优势相结合,优化区域产业链供应链布局。明确京津冀、长三角、粤港澳大湾区等区域产业链补短板和锻长板的关键环节,以及需要协调推进的重点项目,使其在提升产业链供应链安全水平中发挥更大作用。进一步推动超大城市功能疏解,把中心城市带动周边市县共同发展作为培育都市圈的重要内容,形成更加合理有序的产业分工格局。加大对内开放力度,加快建设内陆开放新高地,增强中西部地区产业承接能力,实现东中西部合理分工、协同联动发展。
第五,切实加强产业链供应链国际合作。以国际循环提升国内大循环效率和水平,促进关键技术和产品的国际供应更为多元化,改善我国生产要素质量和配置水平,增强我国在全球产业链供应链创新链中的影响力。建立与高水平开放相适配的产业链供应链安全数据库、安全评价体系及预警机制,并进一步深化区域合作。
时空穿越不再是梦?科学家成功模拟“全息虫洞”!******
近日,科学家打造出
“全息虫洞”的消息冲上热搜
引发了大家的讨论
虫洞是什么?
我们真的能用它穿越时空吗?
今天一起了解虫洞
01虫洞?是虫子住的洞吗?
宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。
电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦!
图源:截图 电影星际穿越中的画面
要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。
一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。
图源:中科院理论物理研究所 虫洞示意图
1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。
这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。
02量子虫洞又是啥?
虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。
日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。
如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。
那么,研究量子虫洞有什么用呢?
这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。
具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。
物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。
03量子虫洞是怎么创造出来的?
2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。
现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。
这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。
在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。
图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞
尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。
END
资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位
整理:董小娴
(文图:赵筱尘 巫邓炎)